If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-43y+4=0
a = 7; b = -43; c = +4;
Δ = b2-4ac
Δ = -432-4·7·4
Δ = 1737
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1737}=\sqrt{9*193}=\sqrt{9}*\sqrt{193}=3\sqrt{193}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-3\sqrt{193}}{2*7}=\frac{43-3\sqrt{193}}{14} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+3\sqrt{193}}{2*7}=\frac{43+3\sqrt{193}}{14} $
| 26/5/37/6=t | | –9d+12d=15 | | 26/5/37/6=t/50/7 | | x+-0.07x=136237.3 | | 0.8^t=0.6 | | (2x/3)-(3/4)=(x/6)+(21/4) | | 47x+47=1974 | | 3r-7=35 | | 76x-380=1976 | | (x-3)^2+2x+7=x^2-2x | | -5(2x+3)=2x+6-(8x+2) | | 3x2-2x=40 | | Y=-0.5x^2-4x-7.5 | | 9x+42=11 | | 6/9=w/10 | | (X+16)+(x+29)+(x)=180 | | 128+c=6‚012 | | x=34.64101615+30 | | x=34.64101615 | | 2.2/3x=16 | | y=24+24 | | x=24+24 | | 1/x^2=1/7x+1/7x^2 | | 24m+12=4(m+3+5m) | | x=24=24 | | -2(3y/2-0.5)+7y=13 | | 2x^+4x-1350=0 | | 13x+9=-3(2x+3)+3(x-4)+1 | | 5c+17=(9-c+12+3c | | 4x^2-267=0 | | 4×12=v | | 7+9=s |